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ABSTRACT

Part I of this paper has discussed longitudinal wave propagation,
perpendicular to the static magnetic field, in a warm homogeneous
magnetoplasma, Part II extends the work to oblique propagation, The
ring and Maxwellian transverse velocity distributions, which are
absolutely unstable and stable, respectively, for perpendicular prop-
agation, are shown here to be both absolutely unstable for oblique
propagation. Their instabilities are radically affected by the intro-
duction of axial velocity spread, A detailed study is made for the
cases of a Maxwellian transverse distribution with resonance and
resonance-squared axial velocity distributions, It is shown that
absolute instabilities occur at high energy anisotropies. These become
convectively unstable as the anisotropy is reduced, and are guenched
as isotropy is approached. The isotropic Maxwellian is treated in

detail, and shows both cyclotron and Landau collisionless damping.

*Now at CEN de Saclay, France
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1. INTRODUCTION

In Part I (Tataronis and Crawford 1969), we considered the prop-
erties of perpendicularly propagating CHW for the ring, spherical shell,
and Maxwellian electron velocity distributions, and for a mixture of
ring and Maxwellian, We continue by considering obligue propagation,

In Section 3, a thorough study of the ring distribution is made, This
is followed by consideration in Section 4 of a Maxwellian transverse
distribution., Though highly instrictive, these distributions are not
realistic in the sense thét the electrons in practical magnetoplasmas
will always have some motions parallel to the static magnetic field,

For this reason, the remainder of the paper is devoted to assessing

the influence of such motions on the strength and nature of CHW
instabilities. Section 5 retains the Maxwellian transverse distribution,
and investigates the effects introduced by resonance and resonance—-
squared axial velocity distributions, This requires some refinements

to the stability criterion used in Part I, These are presented in
Section 2, Finally, Section 6 treats an isotropic Maxwellian distribution,

As before, we emphasize that we are not presenting a'review of
previous work, but are trying to present systematically in a single
source the salient features emerging from our numerical studies of the
very complicated CHW dispersion relations appropriate to a variety of
basic electron velocity distributions. The pioneer work in the field,
and many more recent results, should be accessible via the review by

Crawford (1967).



2, THEORY

The general CHW dispersion relation may be written as (see Part I)

2 ) oo
H (v )
p
K((D,'li)=1 .._2_ z f ‘&_kngm.—_o (wi<o) ,
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bt ‘ nw af of kv
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For velocity distributions of the form fo(vl,v“) = fl(vl)ﬁ(v“),

(1) reduces to
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(2)
Two such cases, i.e. without axial velocity spread, will be studied in
Sections % and 4. It is clear from (2) that the roots’ o(k real) must
be either real, or occur in complex conjugate pairs. This is similar to
the behavior of ’the cases treated in Part I. Mode coupling, and absolute
instability, will again be shown to occur.
When there is axial velocity spread, the situation is more compli-
cated, and it becomes important to note that K(d),}s) given by (1) is not
a unique function, but has two branches for k“ real, These are readily

separated by introduction of the identity

= -i f dg exp[i(v“ - wn)g] 5 (3)

0

I n

where wn = (0) - na)c)/k“. To ensure convergence of the integral, the plus

sign is chosen if LA <0 and the negative if Wni > 0, Substituting
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(3) in (1), and assuming ®, <0, leads to

2
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Here, Hn(Q,kL,k“) is the Fourier transform_ of Hn(v“,kL,k“),

o0
H(C,k k):fdv exp(iv £) H (v ,kx ,k ) . )
nt eIy I 177 0y (>
-0
The two branches K+, K_, are connected by the relation
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As a result of the decomposition of K(w,kL,k“) in (L), the insta-
bility criterion stated in Part I, Section 2, must be modified, The appro~
priate chahges have been stated by Derfler (1967). For discussion, assume
that kl is a fixed, real number and that the propagation is parallel to
the magnetic field, Derfler's work then implies that absolute instability
is present if zeros of K+@D,kl,k ) collide across the positive k“ axis,
or if zeros of K_(m,kl,k“) collide across the negative k‘ axis, as O
varies along some contour in the lower half complex plane., We shall make

use of this modified instability criterion in later sections,



3. RING DISTRIBUTION

This distribution may be written as (see Part I)

1
fO(V_L’V“) = _2:'(-:].5: S(V_L - VO.L) 5(V“) . (7)

Substitution of (7) in (2) yields the dispersion relation

K(w k) =1 - L2 — L =
) + (M ) = 0
w2 2 V) dp w- 2 i
ckn=-ooj_ 1 k7 pmeco ((Dnd)) ()
8
Remembering that kX =k <+ ki, (8) may be rearranged to give
2 o
QO =
2 k2 (Di n=-o02 “-“- dp-‘- wc
cot™@ = -g = - > 5 R (9)
k (49 b »
+ 1 - -2 P =
c Ne=~—-00 = mD

where O is the angle between E, and the static magnetic field,

Dispersion Characteristics

Figure 1 shows numerical solutions of (19) for several values of @,
and wi/wi = 1, The curves for 6 # 90o indicate that there are now two
branches undulating about each cyclotron harmonic line. At nw, , there
are resonances (all n), and cutoffs (n # 0). Two additional cutoffs can

be located by putting b= 0 in (9),

o < LoR s ol s [(@ReR) 4 whPaolt] . (10)
2 P\3
These tend to © , ® , as € tends to zero, and (wp+a%)2, zero, as @

tends to 90°.
It is easy to see from (9) that the undulating branches cut the har-

monic lines at the zeros of Jn(ul)' As © tends to 90°, the curves
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Fig. 1. DISPERSION CHARACTERISTICS OF OBLIQUELY PROPAGATING
CYCLOTRON HARMONIC WAVES: RING DISTRIBUTION,



pinch towards the points Jé(pL) = 0, so that in the limit one undulat-
ing branch intersects each harmonic line at Jn(ui) = 0 and Jé(pL) = 0,
We note from the curves for 0 = 45° that a downgoing loop from (Dﬂbc =1
has coupled with an upgoing loop ffom w/mc = 0 to produce an absolute
instability. An additional instability is exhibited for & = 150, where
for convenience (Diﬂbc (dashed) has been plotted using (DﬂDc =1 as a’
base line., We conclude from these results, and table 1 of Part I, that
instability may occur in oblique propagation well below the threshold for
unstable perpendicular propagation, )

A thorough study of (9) could be made via diagrams such as figure 1,
Since we are solving for m(E'real), and the instabilities are absolute,
we have preferred the alternative of producing the families of curves
shown in figure 2 for fixed kl and varying k . These have the advan-
tages of being easily related to the work of Part I, and are directly
relevant to parallel propagation in a transversely bounded plasma, where
the finite dimensions could be accounted for roughly by taking a fixed
value of ki'

To find the cutoffs for figure 2, we put kn = 0 in_(9). One set
of cutoffs are given by the zeros of the numerator, which is just the
CHW dispersion relation for perpendicular propagation, so they may be
read off figure 2 of Part I. Our choice of u = k¢VOLﬂDC =1, 3, 4,5,
will now be appreciated. The first value is in a region where no insta-
bility can occur for perpendicular prbpagation; the second is where only
the zero-frequency instability can occur, and the third is where mode
coupling can occur for 1 S(Drﬂbc < 2, A second set of cutoffs can be

obtained by approximating (9) by

i eneJrfl(pl) ® - na)c> )
= - (0w~ nw ) . 11
k2 H.\.Jn(u.L) naz ¢

Thus, W/ - n as k“ - 0, so there is a cutoff at each cyclotron
c
harmonic.,
The resonances (k = m) occur when the denominator of (9) is zero,
]

2 ,.2
This function is plotted in figure 3a. For wpﬂbc = 0,25, two branches



6 2,.2
wd/w@=0.25 wi/wd =|
5
4
w/we
3
2 ————
e
= —
0 1 i 1 e T T.——-—_j _______
wp/wé =5 wi/wé =8
S
4
U/wc
Ll | e
2 o o - o o o s et s e e ~
L j
i B T e e e S o e e S 8 i, e e e S i e — o
e —— v
wi/wé =20 w2l -
5
4
w/WQ
3
2 W ?_ Pes g —
I ———————— TS T N S S ety o s s - e O D i S AR ST Y O S S s VPG o S it S Pt o ]
P A — | i S
0 2 q 6 0] 2 4 6 8
kyvo1/we Kivo /we
(a) k.LVO.L/wc =1.0

Fig. 2. DISPERSION CHARACTERISTICS OF OBLIQUELY PROPAGATING

CYCLOTRON HARMONIC WAVES: RING

DISTRIBUTION,



6 v
w§/wE=0.25 W/l =1
5
4 -—————m o —
w/WQ -
3 \\
| ——— <"’——’ e e e i o
0 » L I 1 1
wp/wé=3 wi/wé=8
5
4 e S——— e mmEm e e
w/wc /
3 — T =
2 < """""""" S —
| /"_______.__..;:'___m /"___
\ ————————————————— . _ T, e
o - 1 1 - \ R A
5‘_._} —_—
4 “’———_———— i o e e e o e e ]
w/we I
3 \"' »\‘,_—
» 6—-— <,,_
N —— D —————
0-,_——”'_ - - - ”’—'_"‘—— I l |
0 2 4 2) 0 2 4 6 8
kyvor/w, kyVor/we
(b) k.LVO.L/(Dc = 3.0
Fig. 2. CONTINUED.



wj/wé =1 wiwd=3
5
= ——
4 e L I

Fig. 2. CONTINUED.



w/w,

w% /w% =0.25

wd /wg =0.25

5 10 0 5 i0
wglw?::l wg/w%=l
AJn(ﬁl)=0

(a) Ring distribution

Fig. 3.

RESONANCE FREQUENCIES

k.l. v,‘l/wc.

(b) Maxwellian transverse
distribution

(k" = ®) OF OBLIQUELY

PROPAGATING CYCLOTRON HARMONIC WAVES,

10




undulate about each harmonic line, and intersect them at the zeros
(th) of Jn(ul). There is no coupling between upgoing and downgoing

loops, so the resonance frequencies are real, For (Diﬂbi = 1, coupling

occurs. For all cases we have considered, coupling occurs in the ranges
2,2 \

< < W=/ i -

Cm By O%n+1) and O%n+1) < bo< o gm+l)’ for p/ o suffi-

ciently large, Some critical values of m2ﬂb are given in table 1 for

the first three frequency bands., They are clearly much lower than those

for purely perpendicular propagation.(see table 1 of Part I).

Frequency Band

ro<a>/wc<1 1<om <2 2 <MW <3 N
2,2 2,2 2,2

Ra W= Ab ! ) w
ange of by p/ - Range of oy wpﬂbc Range of W, &p/ o
0 - 2.4 0.34 0 - 3.83 0.53 0 -5.14 0.66

2.40 ~ 3,83 1.07 3.83 - 5.1k 1.70 5.14 - 6.38 2.29
3.83 ~ 5.52 1.38 5.14 - 7.02 1.62 6.38 - 8.42 1.82

TABLE 1, Instability threshold values of wi/mi

We now consider the families of dispersion characteristics displayed
in figure 2. For wiﬁbi small, each passband has two propagation
branches associated with it, the frequency spread about nmk decreasing

rapidly with increasing n. For Byo= 1, instability first occurs in

the lowest passband, for a value of klvOiﬂbc corresponding to propaga-

tion at 6 ~'h5°. Successive passbands become unstable roughly for
2 2

mp + mc > (na%)2, but the growth rates are small except in the first
few passbands. For By, = %, instability occurs first in the second and
third passbands, and for wi/&i = 3 has spread to the first and fourth.
Above mi/mi = 17.02, we expect additional effects since the zero-
frequency instability has set in for purely perpendicular propagation,

2
These appear in the lowest passband for wi/mc = 20, At small k

J

there are two imaginary roots. As Kk increases, there is a traésition
to complex roots with a very rapid growth rate. Further increase in
miﬂbi reduces the real parts to zero, leaving purely imaginary solutions
for all k". For the final case, HL = 4.5, where unstable perpendicular

propagation first occurs in the band 1 Slnfﬂbc <2, the characteristics

11



in all other bands are similar to those for Byo= 1, <though with stronger
growth rates. In the second passband, however, there is absolute insta-
bility for all k once the perpendicular instability threshold has been
passed. The results for wi/mi 2 8 suggest that the instability in this
band always has the highest growth rate,

A common feature of the curves in figure 2 is that the branches
w(k ) increase or decrease monotonically towards coupling points, It
follows that the threshold for coupling will have k =, and that
curves such as those of figure 3 determine immediategy whether a given
band will be unstable or not., The instability thresholds suggested in
this way are substantially lower than for perpendicular propagation. In
anticipation of Section h, it should be pointed out that, in practice,
there is always a spread of electron velocities parallel to the magnetic
field., This can strongly modify the threshold conditions, An additional
caution should be stated against interpreting too literally the limit
k — o, since the theory will ultimately break down at wavelengths com-

|
parable with an electronic Debye length,

12



4, MAXWELLIAN TRANSVERSE DISTRIBUTION: NO AXIAL VELOCITY

In Part I, it was established that introduction of a transverse
velocity spread led to less violent perpendicularly propagating insta-
bility than that associated with a ring distribution, and could give
complete stability if Bfo/avl <0 for all v, > 0. The Maxwellian~
falls into this class, and we now wish to determine whether stability
persists when oblique propagation is considered.

For no axial velocity spread, the distribution may be written as

2
v

fL(vl,v“) =

S(V“) . (12)

1
2
QJIV,C_L 2vtl

Substitution in (2), and some manipulation, yields the dispersion rela-

tion
o 2 exp( A)I () kimbc ngmi
K(w,k) = —-‘2’- z + =0 , (13)
® - nw (® - nw )
C n= =00 C C

where A\ = (klvtlﬂbc)g. Equation (13) may be rearranged analogously to

(9) as

2 o
. —(J-b—IZ Z exp(—)\)ln(k) n,,
k2 w2 nfs A w - nw,
cot @ = =L = - g 5 . (14)
e W 0 w
4 P C
- —— =3I ——
1 - em(-01,0) P
c n=-0 c

Dispersion Characteristics

As for the ring distribution, one set of cutoffs are found from (lu)
at nw, , and a second set are determined by the numerator. Its zeros
are solutions of the CHW dispersion relation for perpendicular propaga-
tion, and can be read off figure 5 of Part I. Unlike the ring distribu-

tion, these cutoff frequencies are always real. Resonances occur at

13



zeros of the numerator of (lh). Their behavior is shown in figure 3b,
contrasted with that of the ring distribution, There are two modes in
each passband, but instead of undulating about the harmonic liﬁes, their
separation increases to a maximum then decreases to zero as k._L -0,
Even for wpﬂbi = 1, coupling is possible, and figure 3b shows absolpte
instability in the first two passbands. A consequence of the nonundula=
tonrnature of the propagation branches is that there can be instability
in only a single range of klvtiﬂbc’ for a given passband, For distri-
butions such as the ring, there may be many ranges.

Figure L shows typical dispersion characteristics computed from
(14). They may be compared with the relevant curves of figure 2b for
the ring distribution, and are found to be very similar, Although an
exhaustlve numerical study has not been made, we can be sure that there
are no long wavelength (k — 0) instabilities for any value of ® Aw
Qur next concern must be tg see to what extent the short Wavelength

_ instabilities are quenched by the introduction of axial velocity spread,

1k
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5. MAXWELLIAN TRANSVERSE DISTRIBUTION: RESONANCE AXIAL DISTRIBUTION

To derive the CHW dispersion relation in the presence of a velocity
spread parallel to the static magnetic field, (1) is required, and for
axial distributions such as the Maxwellian leads to an expression trans~
cendental in k ., The numerical stability analysis is then greatly com~
plicated by the"presence of an infinite series of Landau poles, These
mathematical difficulties can be avoided, with little loss to the phy-
sics, by considering plausible analytic approximations to the axial velo-
city distribution of interest, constructed so as to yield simpler disper-
sion relations algebraic in k , i.,e. with a small number of Landau
poles, For this reason, we shall now investigate resonance-type distri-

butions of the forms

, v exp(-v2/2v2 ) v exp(—V2/2V2 )
£ (V v ) = ty ) tL® £ (V ) ty L 't._‘l.__
O L7y o 2V2 (v2 V2 ) 4 AR ﬁ2v2 ( 2 V2 )2
tL i iy t .
(15)
Substitution of the first of these in (1) yields
+ o’
p . .
K (0,k) = 1 - ~= F(w-ik v k, k ® <0,k >0)
(@, 2 ( gt oy u) (® <0, [ ’
c
2 exp( -)\)In(h) kina)c )\kgwi
Flw,k ,k ) = Z + L . (16)
2 O - nw ((l) - n® )2
n=- ca Ak c -
Substitution of the second ("fesonance—squared") distribution in (1)
leads to
* w2 dr(o-tk vy K, k)
K(0k) =1 -2 |Flw-ik v + ik v = =0
(@.%) 02 ( TR n) 0oty o ’
c
(cni <0, k“ >0) . (17)

16



Stability Analysis

Comparison of (16) with (15) shows that the dispersion relation for
the simple resonance axial distribution can be obtained directly from

that with no axial velocity by replacing ® with ®-ik v Since the

initial step in the stability analysis is to solve (16) fsr w(E‘real),
we see that the transformation changes wi’ but not mr' Figure 5
illustrates this for the parameters of figure 4, Both of the imaginary
parts of the complex ® solutions are piotted. The real parts are still
given by figure L. We note that the introduction of the complex Doppler
shift due to axial velocities has the effect of stabilizing the short
wavelengths (k = ), In the first passband, there is now only a narrow
range of k“vtl}Dc for which wi < 0. In the second passband, the range
is even more restricted. The third passband has been stabilized, and all
higher passbands (3 <CDrﬂDC) show the same attenuation, wi = k“vt”.

In previous sections, and Part I of the paper, complex conjugate
solutions were obtained for w(E’real), and the instabilities were inter-
pretable as absolute. With an axial velocity spread, this is no longer
the case, and more detailed stability analysis is required. This could
be carried out for the simple resonance distribution, but we shall not
do so, since it has the undesirable feature of an infinite thermal velo-
city. We have employed it because of the direct demonstration it pro-
vides, and the insight it gives,into the stabilizing effect of axial
velocities., For the stability analysis, we shall consider the dispersion
relation of (17), for the resonance-squared distribution. This has a
thermal velocity of Vt“'

Figure 6 shows typical dispersion characteristics computed from (17)
for the pérameters of figure 4, As in our previous examples, there are
two propagating branches in each passband, For clarity, these have been
separated into two'sets.‘ We note that there is one unstable branch in
the first passband, with wi/mc < 0 over a short range of k“vt"ﬂbc,
and a root with lDiﬂDc dipping down towards instability in the second
passband,

The latter is studied in more detail in the conformal mappings of
figure 7, which show contours A-D in the complex ®-plane mapped into the

complex k“—plane via (17). In accordance with the stability criterion

17
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quoted in Section 2, we look for saddlepoints (3K+/Bk = 0) correspond-
, . +

ing to the merging of two zeros of K (w,g) across the positive k axis,
and their corresponding branchpoints in the ®W-plane. For v, /v, = 0.k2,

ty ot
merging occurs with wiv< O at the branchpoint, so there is absolute

instability. An increase to Vtu/vt = 0.43 makes @, > 0 at the

L
branchpoint. Since there are still solutions with mi <0 for
k“ivt“/ﬂ)c = 0, the situation is now convectively unstable, For a fur-

ther increase, to Vt“/vt = 0,50, we see that mi >0 for k v, /o =0,

L i t“ [
This implies that the convective instability has been quenched and the
root is stable, There would still remain of course, the unstable root
shown in the first passband in figure 6, This could be removed by a fur-
ther increase in v, /v, .

ty tdL

To complete the stability analysis, it would be necessary to fix

Vt“/vt.l.
but will simply state the following speculative general conclusions,

and repeat the procedure for all real kl' We will not do this,

which are supported by other computations we have carried out on this
and other magnetoplasma instabilities: Oblique propagation always leads
to absolute instability if there is zero axial velocity spread, i.e.
infinite anisotropy. As the anisotropy is reduced, the instabilities

become convective. They are finally quenched as isotropy is apprdached.
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6. ISOTROPIC MAXWELLIAN DISTRIBUTION

To complete the comparison with the basic cases treated ih Part I,
we now consider a Maxwellian transverse velocity distribution, and a

Maxwellian axial distribution. Most generally, this may be written as

2 2
) 1 v-L v
f = - -
O(VL’V“' (2n)5/2v V2 P 2v2 2v2 ’ (18)
ty ti tiL ty
where Vt“ and Vt; are the parallel and pérpendicular thermal veloci-

ties, respectively., Substitution in (1) leads to the dispersion relation

o2 0 o - (1-T)nw ® -~ ne
K(@,k) = 1 + =L |1 + exp(-A)I (1) 7 Sll=0
~ Kove ’ n 5Bk o8y B
v —=—-00 v v
ty o Ity Ity
(19)
where T = vi“/vil, and Z(z), which arises from the v“ integration,

is defined as (Fried and Conte 1961)

o0 5 o=0 5 Zi <0
- i
a(z) - 4 [E) o w0 () ], <o) (20)
2
e % =2 >

Here, the principal part of the integral is taken if =z 1lies on the
real t axis.,

For gnisotropic plasmas with Vt“ < th’ instabilities similar to
those discussed in Section 5 are to be expected. They have attracted
considerable interest, and the reader is referred to the literature
(see Crawford 1968 for references), Here we shall consider the isotropic
case (vt = Vt“ = vtl), which is completely stable (Bernstein 1958).

Dispersion Characteristics

Figure 8 shows numerical solutions w(E'real) to (19), and con-

firms the absence of instability. As in all other cases in Part II,
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there are two branches in each passband, These have been separated, for
clarity, Although there is no collisionless damping for purely perpendi=-
cular propagation, we note that the attenuation increases veryvrapidly
with k"vtﬂbc, particularly for the modes with cutoffs at o, . Bear-
ing in mind that mi war corresponds to an attenuation of over 50 qB/
cyclotron period (= 2ﬁﬂ$c), it will be appreciated from figure 8 that
propagation will be difficult to observe experimentally for angles only
a few degrees off exact perpendicularity.

Since there are no absolute instabilities present, we are entitled
to solve (19) for pr real), The character of the Z-function of (20)
makes this by no means trivial, however, and for complex E‘we shall pre-
sent only the set of curves shown in figure 9. Particular branches have
been chosen so as to illustrate the passage from no collisionless damping
in the limit O = 9OP, to Landau damping of plasma oscillations when
8 = 0. A distinction may be made in this respect between cyclotron and
Landau-type interactions: An electron spiralling about the magnetic
field sees the wave at the Doppler-shifted frequency ® - k v , If a
spread in v exists, it is possible to find electrons for ghgch
'’ ksnak, wﬂere n 1is an integer. There is then an energy exchange
between the electrons and the CHW via its electric field, Damping
results if the electrons gain energy, while instability occurs if the
electrons lose energy. Cyclotron damping (or instability) arises from
those electrons which see the CHW at nw, (n # O). If the electrons

see a static field, corresponding to n = 0 Landau damping (or insta-

2

bility) results. In the limiting case @ = O, the electric field of

the wave is parallel to so the damping is purely of the Landau

By
type.

2k
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7. DISCUSSION

The computations of Sections 3-6 demonstrate that oblique prop-
agation has features which disappear in the perpendicular propagation
limit, Most important is the presénce of a second branch in each
cyclotron harmonic band. These contribute materially to mode coupling
and the occurrence of instabilities, For the ring distribution, the
results of Section 3 indicate much lower instability thresholds
Qniﬂbi), while Section 4 demonstrates that instability can occur in
oblique propagation for the Maxwellian transverse distribution; a
distribution which was shown in Part I to be stable for perpendicular
propagation,

Addition of an axial velocity distribution produces successively
three new effects. First, it stabilizes short wavelength instabilities.
Second, it can convert absolute to convective instability, and third
it can quench instabilities entirely if isotropy is approached. Indeed,
the dispersion relation for an .isotropic Maxwellian generally shows
very strong damping, except within a few degrees of exactly perpendicular
propagation,.

In Part I, a mixture of ring and Maxwellian distributions was
examined in detail. It would be very time-consuming and expensive to
extend this work to oblique propagation, but we may speculate on the
likely behavior of this and other mixtures of energetic electrons in a
stable background. It seems likely that the high damping in a Maxwel-
lian plasma could only be offset by a relatively dense energetic group,
and that marginal stability would occur for nearly perpendicular prop-
agation, Further work is required, and may point the way to a suitable
experimenf for checking—the theory. For example, the density of the
energetic group could be raised while oblique CHW propagation was
measured in a Maxwellian background plasma. The reduction of damping
and the onsets of convective and absolute instability should all be

measurable for comparison with numerical predictions,

This work was supported by the U.S. Atomic Energy Commission, and
the National Aeronautics and Space Administration., The authors are

indebted to Dr. H, Derfler for many helpful discussions,
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